
FOR THE NERDS:
From the Euler equation, eix = cos(x) + i sin(x), so the set of complex numbers (or C-line) is iso-
morphic to R2 (Cartesian product of 2 real lines). So to switch sin and cos neatly using eix =
cos(x) + i sin(x), you need to switch the real and imaginary components of these numbers, or switch
the components of this 2-vector. This is a reflection in R2, and can be given by σx the x Pauli matrix[
0 1
1 0

]
.

All reflections and rotations in Nd can be characterised by the O(N) orthogonal group, and so for
the C-line ∼= R2, O(2) will suffice. σx is naturally an element of O(2), characterising a reflection in
the y=x axis which is exactly what we would need. But to tie this back to the complex numbers
now, the U(1) unitary group characterises the subgroup of rotations in O(2), but cannot describe
reflections. But if you consider complex conjugation as a unary operator, this has the ability to map
z → z∗ ⇔ x+ iy → x− iy, which can be viewed as a reflection in the x axis. So considering U(1) with

the unary map C(z) : x + iy → x − iy, (which can be represented by

[
1 0
0 −1

]
which also happens

to be σz the z Pauli matrix), we can make a group isomorphism to the O(2) group by allowing this
map to provide the concept of reflection.

The reason for this is, our vectors exist as elements of U(1) which is an abelian group, as scalar
multiplication is commutative. So the order of transformations do not matter. The same cannot be
said for O(2), as this doesn’t hold for rotations combined with reflections. So we want to use the
operations of the transformations from O(2) (σx in particular) applied to elements of U(1). These
groups are fundamentally different, but complex conjugation operation (C) perfectly destroys the
commutativity of the multiplication, to allow us to build an isomorphism.

We want to find the element of U(1) that corresponds to σx in O(2), which does exactly what we
need by switching the imaginary and real axes. So a group isomorphism which inherently protects
the underlying group structure, will allow us to understand what transformations to apply in U(1),
to flip the real and imaginary axes, to switch sine and cosine.

Diagonalising σx, then reversing gives you:

σx =
1√
2

[
1 1
1 −1

]
︸ ︷︷ ︸

H

·
[
1 0
0 −1

]
︸ ︷︷ ︸

σz

· 1√
2

[
1 1
1 −1

]
︸ ︷︷ ︸

H−1

= HσzH
−1 = Ad(H)(σz)

Where H is the Hadamard gate as seen in quantum computing. If you notice, H2 = I = σ2
x ⇔ H =

H−1 and σx = σ−1
x . So:

σ2
x = I ⇒ σ3

x = σx = σx ·
(
HσzH

−1
)︸ ︷︷ ︸

σx

·σ−1
x = σx =

(
σxH

)
· σz ·

(
σxH

)−1 [
= Ad(σxH)(σz)

]
.

Due to elements of O(2) being able to represented by group of matrices R̂
(
x
)
=

[
cos(x) − sin(x)
sin(x) cos(x)

]
With the hats being used henceforth to emphasise that the unary maps can be view as operators that
act on a state and map you to another one.

We can immediately see applying σx to H corresponds to the O(2) group representative of a rotation
by π

4 , hence the inverse of this matrix product by group isomorphism rotates by −π
4 . Implicitly the

isomorphism to U(1) maps matrix multiplication to scalar multiplication, with the angle represented
by the exponent. The underlying group structure is preserved allowing

σ̂x =

R̂
(

π
4

)︷ ︸︸ ︷
1√
2

[
1 −1
1 1

]
︸ ︷︷ ︸(

σxH
)

·

Ĉ︷ ︸︸ ︷[
1 0
0 −1

]
︸ ︷︷ ︸

σz

·

R̂
(
−π

4

)︷ ︸︸ ︷
1√
2

[
1 1
−1 1

]
︸ ︷︷ ︸(

σxH
)−1

= R̂

(
π

4

)
◦ Ĉ ◦ R̂

(
−π

4

)

1



In U(1) group with complex conjugation operation, this allows σx to be represented as
(
ei

π
4 ◦Ĉ◦e−iπ

4

)
,

which we will call ˆ̃σx. Using Ĉ as conjugation map from earlier, this makes:

ˆ̃σx

(
eix

)
=

(
ei

π
4 ◦ Ĉ ◦ e−iπ

4

)(
eix

)
= ei

π
4 · Ĉ

(
ei
[
x−π

4

])
= ei

π
4 ·

(
ei
[

π
4 −x

])
= ei

[
π
2 −x

]
So ˆ̃σx represents the mapping eix → ei

[
π
2 −x

]
), and more abstractly R̂

(
x
)
→ R̂

(
π
2 − x

)
and so the

transformation x → π
2 − x turns sines into cosines and cosines into sines. □

σx is also the NOT gate from quantum computing which interchanges states/components of C 2-
vectors, so makes sense why σx plays a pivotal role here.

Summary:
To summarise, I treated eix = cos(x) + i sin(x) as a 2-vector, to interchange sin and cos, I needed to
find the how flip the vector components. Which I knew how to do using rotations and reflections –
which is also the NOT gate in quantum computing.

Then constructed an underlying link between the complex numbers and these rotations and reflections
by cleverly modifying the structure, while being careful not to break the connection, so I could
translate all the information across to find out how to transform x.

S

2


